
Ethereum Foundation

c-kzg & go-kzg
Security Assessment Report

Version: 1.0

May, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Incorrect Deserialisation of BLS12-381 Points . 6Panics in from_hex() for Rust Bindings . 7Panics in UnmarshalText() for Go Bindings . 8Potential Panics Loading Trusted Setup . 9Lack of Validation of Parameter Length . 10
NewDomain() Will Panic for Certain Input . 11Random Oracle for Batch Proofs may be Zero . 12Miscellaneous General Comments . 13

A Vulnerability Severity Classification 14

1

c-kzg & go-kzg Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Ethereum FoundationKZG implementations. The review focused solely on the security aspects of the source code, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Primedoes not provide any guarantees relating to the function of the KZG implementations. Sigma Prime makesno judgements on, or provides any security review, regarding the underlying business model or the individualsinvolved in the project.

Document Structure

The first section provides an overview of the functionality of the Ethereum Foundation KZG implementationscontained within the scope of the security review. A summary followed by a detailed review of the discoveredvulnerabilities is then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classi-fication), an open/closed/resolved status and a recommendation. Additionally, findings which do not have directsecurity implications (but are potentially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Ethereum Foundation smart contracts.

Overview

An upcoming improvement to the Ethereum protocol is the introduction of EIP-4844. EIP-4844 introduces theKZG Polynomial Commitment Scheme.
The implementation in EIP-4844 is aimed at polynomials of degree 4096 where each coefficient or evaluation isin the finite field denoted by the prime r , where r is the size of the subgroup group use in BLS12-381 curves.The implementation uses BLS12-381 elliptic curve points for the elliptic curve discrete logarithm (ECDLP).
A trusted setup is required for the scheme. The trusted setup has not yet completed, contributions can be addedhere.
Scope of the review includes the following repositories including the bindings of c-kzg-4844 into the languagesRust, Golang, Nim, Java, Node JS, C Sharp and Python.

• go-kzg-4844
• c-kzg-4844

Page | 2

https://www.eip4844.com/
https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf
https://ceremony.ethereum.org/
https://github.com/crate-crypto/go-kzg-4844/
https://github.com/ethereum/c-kzg-4844/

c-kzg & go-kzg Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the crate-crypto/go-kzg-4844 and ethereum/c-kzg-4844repositories. They were assessed at commits a201da1 and fd24cf8 respectively.
The manual code review section of the report is focused on identifying any and all issues/vulnerabilities as-sociated with the business logic implementation of the source code. This includes their internal interactions,intended functionality and correct implementation with respect to the consensus specifications.
Additionally, differential fuzzing was performed between the two implementations. Differential fuzzing targetswere designed to discover variances between the execution of clients given the same input.

Findings Summary

The testing team identified a total of 8 issues during this assessment. Categorised by their severity:
• Critical: 1 issue.
• High: 2 issues.
• Low: 1 issue.
• Informational: 4 issues.

Page | 3

https://github.com/crate-crypto/go-kzg-4844/
https://github.com/ethereum/c-kzg-4844/tree/fd24cf8e1e2f09a96b4e62a595b4e49f046ce6cf
https://github.com/crate-crypto/go-kzg-4844/tree/a201da1a03ff17ba4361705604e1bce6abce5581
https://github.com/ethereum/c-kzg-4844/tree/fd24cf8e1e2f09a96b4e62a595b4e49f046ce6cf
https://github.com/ethereum/consensus-specs/blob/dev/specs/deneb/polynomial-commitments.md

c-kzg & go-kzg Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Ethereum Foundationsmart contracts. Each vulnerability has a severity classification which is determined from the likelihood andimpact of each issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the source code are also described in this section and are labelled as “in-formational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
EKZG-01 Incorrect Deserialisation of BLS12-381 Points Critical Resolved

EKZG-02 Panics in from_hex() for Rust Bindings High Open

EKZG-03 Panics in UnmarshalText() for Go Bindings High Open

EKZG-04 Potential Panics Loading Trusted Setup Low Open

EKZG-05 Lack of Validation of Parameter Length Informational Open

EKZG-06 NewDomain() Will Panic for Certain Input Informational Open

EKZG-07 Random Oracle for Batch Proofs may be Zero Informational Open

EKZG-08 Miscellaneous General Comments Informational Open

5

c-kzg & go-kzg Detailed Findings

EKZG-01 Incorrect Deserialisation of BLS12-381 Points
Asset ConsensysSys/gnark-crypto/ecc/bls12-381/marshal.go

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The upstream library ConsensysSys/gnark-crypto contains a bug in the decoding of BLS12-381 points. The error allowsinvalid points to be successfully decoded.
The three leading bits of BLS12-381 encoded points are used to determine if the bytes are compressed, the point atinfinity and the sign of the y-coordinate. There are three cases which are invalid and should return an error.

• 0b111

• 0b011

• 0b001

Points with these bit combinations are treated as valid compressed points and decoded successfully. Therefore, the
go-kzg implementation will accept proofs which have an invalid bit combination. As a result, verification of the proofsmay be successful for invalid encodings.
go-kzg and c-kzg will therefore have a consensus fault when verifying proofs which contain these bit combinations.
The issue occurs for points for each of the groups G1 and G2.

Recommendations

To resolve the issue update the library ConsensysSys/gnark-crypto such that it returns an error when decoding pointswith these bit combinations.

Resolution

A resolution can be seen in commit da59459. The resolution is, to return an error for each of the invalid bit combinationsdecoding points in both G1 and G2.

Page | 6

https://github.com/ConsenSys/gnark-crypto
https://github.com/ConsenSys/gnark-crypto/blob/f93a56c714c4e6266429cac111a004e9eec7daa0/ecc/bls12-381/marshal.go#L677-L726
https://github.com/ConsenSys/gnark-crypto/blob/f93a56c714c4e6266429cac111a004e9eec7daa0/ecc/bls12-381/marshal.go#L935-L1005
https://github.com/ConsenSys/gnark-crypto
https://github.com/ConsenSys/gnark-crypto/commit/da59459f67d1b7e066f40f87a1efa17056c91bfb

c-kzg & go-kzg Detailed Findings

EKZG-02 Panics in from_hex() for Rust Bindings
Asset c-kzg-4844/bindings/rust/src/bindings/mode.rs

Status Open

Rating Severity: High Impact: High Likelihood: Medium

Description

There are three from_hex() functions in the c-kzg rust bindings. Each of these functions contains an index out of
bounds panic and a reachable unwrap() .
The functions decode hex strings for the following types:

• Blob
• Bytes32
• Bytes48

The following code snippet is taken from the decoding of Blob , however each of Bytes32 and Bytes48 contains thesame issues.
pub fn from_hex(hex_str: &str) -> Result<Self, Error> {

Self::from_bytes(&hex::decode(&hex_str[2..]).unwrap())
}

An index out of bounds panic will occur hex_str is less than two bytes due to hex_str[2:] . An unwrap() panic will
occur if hex_str is not valid hex encoding. That is the length is not even length or consists of characters outside 0..f .

Recommendations

To improve the robustness of these functions three actions should be implemented:
• ensure the length of hex_str is more than 2,
• ensure the first two bytes of hex_str are 0x and
• remove the unwrap() and propagate an error if hex::decode() errors.

Page | 7

https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/rust/src/bindings/mod.rs#L177
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/rust/src/bindings/mod.rs#L197
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/rust/src/bindings/mod.rs#L216

c-kzg & go-kzg Detailed Findings

EKZG-03 Panics in UnmarshalText() for Go Bindings
Asset c-kzg-4844/bindings/go/main.go

Status Open

Rating Severity: High Impact: High Likelihood: Medium

Description

The functions UnmarshalText() for types Bytes32 , Bytes48 and Blob contain a potential index out of bounds panic.
The following is an excerpt from Bytes32.UnmarshalText() .
func (b *Bytes32) UnmarshalText(input []byte) error {

if string(input[:2]) == "0x" { //@audit index array without validating length
input = input[2:]
}
bytes, err := hex.DecodeString(string(input))

if err != nil {
return err

}
if len(bytes) != len(b) {

return ErrBadArgs
}
copy(b[:], bytes)
return nil
}

If the input length is less than 2 then input[:2] will cause an index out of bounds panic.
The issue can be seen in the following locations.

• Bytes32.UnmarshalText()
• Bytes48.UnmarshalText()
• Blob.UnmarshalText()

Recommendations

To improve the robustness of these functions validate the length of input is more than 2.

Page | 8

https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L71
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L86
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L101

c-kzg & go-kzg Detailed Findings

EKZG-04 Potential Panics Loading Trusted Setup
Asset c-kzg-4844/bindings/go/main.go

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

A range of reachable panics exist in the Golang bindings related to the trusted setup.
There are direct panics in the function LoadTrustedSetup() which occur on malformed input:

• line [131]
• line [134]
• line [137]

Similarly, for LoadTrustedSetupFile() :
• line [162]
• line [170]

Additionally, the remaining API functions will panic if the trusted setup is not loaded .
• line [188]
• line [204]
• line [226]
• line [274]
• line [299]
• line [323]

Finally, when an unknown error type is returned from c-kzg a panic occurs on line [61].

Recommendations

It is recommended to propagate errors as opposed to panicking. Errors may be easily handed by the calling functionand prevent program failure by safely exiting.

Page | 9

https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L131
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L134
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L137
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L162
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L170
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L188
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L204
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L226
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L274
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L299
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L323
https://github.com/ethereum/c-kzg-4844/blob/8e3dd604244161c3b8f60bdfc779b287cc4fb4c2/bindings/go/main.go#L61

c-kzg & go-kzg Detailed Findings

EKZG-05 Lack of Validation of Parameter Length
Asset c-kzg-4844/bindings/node.js/src/kzg.cxx

Status Open

Rating Informational

Description

There is insufficient validation on the number of input parameters before they are indexed in the node bindings.
The variable info is not validated before it is indexed, to fetch the input parameters. Each of the following linescontains unchecked indexing of info :

• line [176]
• line [213]
• line [249]
• line [298]
• line [343]
• line [393]
• line [448]

The impact is considered informational as the Typescript interface kzg.d.ts specifies the number of arguments thatshould be passed to each function.

Recommendations

To mitigate this issue add validation of info.Length for each of the binding functions to prevent an index out ofbounds.

Page | 10

https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L176
https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L213
https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L249
https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L298
https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L343
https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L393
https://github.com/ethereum/c-kzg-4844/blob/b9ae77d6d2872873d44f512f195293de98f00dab/bindings/node.js/src/kzg.cxx#L448

c-kzg & go-kzg Detailed Findings

EKZG-06 NewDomain() Will Panic for Certain Input
Asset go-kzg-4844/internal/kzg/domain.go

Status Open

Rating Informational

Description

There are multiple panic statements in the function NewDomain() which are triggered if invalid input is supplied.
Panics will occur if the input, x , is not a power of 2 i.e. x , 2a for some a . Additionally, a panic will occur if the inputis a power of two greater than 32, which is the largest power of 2 that is a factor of r − 1.
The function is only called for constant input 4096 from api.go and trusted_setup.go and thus is raised as informa-tional severity.

Recommendations

Consider propagating an error as opposed to panicking in invalid input is supplied.

Page | 11

c-kzg & go-kzg Detailed Findings

EKZG-07 Random Oracle for Batch Proofs may be Zero
Asset go-kzg-4844/internal/kzg/kzg_verify.go & consensus-specs/specs/deneb/polynomial-commitments.md

Status Open

Rating Informational

Description

The consensus specs generate a random oracle used to verify batch commitments. The random oracle is generated inthe range [0, q) as it uses the output of the SHA256 hash function and takes the modulus of q .
Batch verification is seen in the following equation where r is the random oracle.
e (∑ r ipr oofi , [s]) == e (∑ r i (commi tment i − [yi]) +

∑
r i zipr oofi , [1])

It is unadvisable to allow r = 0 as the random oracle. That is because each individual pairing in the batch has com-ponents multiplied by a power of the random oracle. Hence, if the random oracle is zero each pairing will contain thepoint at infinity and therefore verify as true, irrelevant of the correctness of the proof.
The issue is raised as informational as the probability of this occurring is approximately 1

q or 3
2256

.

Recommendations

Consider preventing the random oracle from being zero. Alternative solutions are to use rejection sampling or settingthe value to a fixed non-zero value if it is zero e.g. 2.

Page | 12

https://github.com/ethereum/consensus-specs/blob/32358e8fad3425eb23e406413d60744e0f274d40/specs/deneb/polynomial-commitments.md?plain=1#L420

c-kzg & go-kzg Detailed Findings

EKZG-08 Miscellaneous General Comments
Asset *

Status Open

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. BLST interface defines parameter as bool but takes int .
The function blst_p1_cneg(POINTonE1 *a, int cbit) expects cbit to be of type int in . However, the inter-
face in blst.h has definition void blst_p1_cneg(blst_p1 *p, bool cbit) , where cbit is of type bool .

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 13

https://github.com/supranational/blst/blob/e9dfc5ee724b5b25d50a3b6226bee8c2c9d5e65d/src/e1.c#L57
https://github.com/supranational/blst/blob/e9dfc5ee724b5b25d50a3b6226bee8c2c9d5e65d/bindings/blst.h#L180

c-kzg & go-kzg Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

Page | 14

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Incorrect Deserialisation of BLS12-381 Points
	Panics in from_hex() for Rust Bindings
	Panics in UnmarshalText() for Go Bindings
	Potential Panics Loading Trusted Setup
	Lack of Validation of Parameter Length
	NewDomain() Will Panic for Certain Input
	Random Oracle for Batch Proofs may be Zero
	Miscellaneous General Comments

	Vulnerability Severity Classification

